

Digitalizzazione dei

processi: la piattaforma lo T

Industria 4.0: le opportunità per le imprese

Università degli Studi della Tuscia, Viterbo 19.10.2018

Giuseppe Calabrò giuseppe.calabro@unitus.it

Arcangelo Lo lacono a.loiacono@unitus.it

...things: gli oggetti

Internet of Things (IoT) Platform

WIRELESS SENSORS NETWORKS (WSN)

RADIO INTERFACE SOFTWARE CLOUD

APPLICATION / VERTICAL

IoT architecture

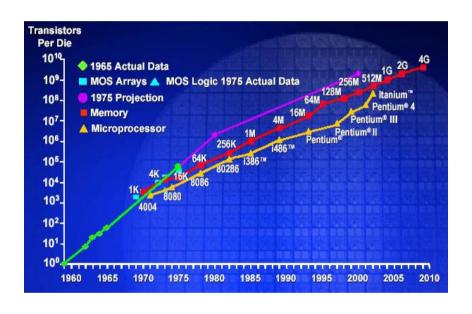
Wireless sensors network

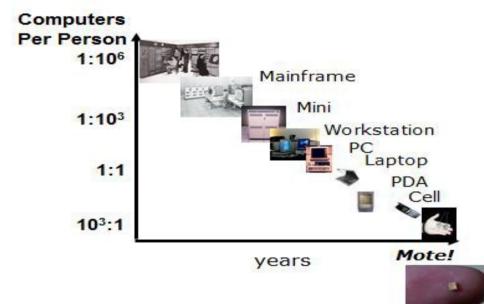
 Sensori Smart in grado di trasmettere le misure su interfaccia radio

Radio Interface

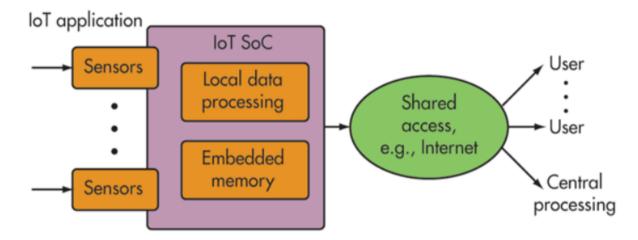
 Nuovi protocolli customizzati per Machine-to-Machine (M2M), BigData e IoT

Software Cloud


La piattaforma SW per l'elaborazione dei dati raccolti


IoT: la rete dei sensori radio – WSN

La tecnologia abilitante: miniaturizzazione CMOS



Legge di Moore: numero di transistor su chip raddoppia ogni 18 mesi **Legge di Bell**: una nuova generazione di calcolatori nasce ogni 10 anni

Source: Lecture slides of "Wireless Embedded Internetworking", Prof. D. Culler, University of Berkeley http://inst.eecs.berkeley.edu/~cs194-5/sp08/

loT: tecnologia dei micro-sensori

Data flow in an IoT application moves from sensors to the cloud.

I micro-sensori (System-on-Chip) ono dei veri e propri micro-calcolatori.

In un'unica piccola board si riesce ad avere:

- la capacità sensoristica → misurare i fenomeni esterni (temperatura, pressione, vibrazione, accelerazione, umidità,...)
- la capacità di memorizzare l'informazione → la memoria
- la capacità di processare l'informazione → il processore
- la capacità di trasmettere l'informazione → i transciever

Caratteristiche dei micro-sensori

- Low Power: basso consumo di energia
 - ✓ Ordine dei milliWatt (batterie da 10 mW/giorno su cm³)
 - Problema dell' Idle listening (mW in modalità attiva, μW in modalità passiva)
- Low Cost: miliardi di oggetti connessi nei prossimi anni
- Low size: 1 milione di transistor su uno spazio di 1 mm²
- Low rate: bit rate molto basso
- →Tecnologia: CMOS RF/DSP

Source: Lecture slides of "Wireless Embedded Internetworking", Prof. D. Culler, University of Berkeley http://inst.eecs.berkeley.edu/~cs194-5/sp08

IoT: the radio interface

- Le informazioni raccolte dai WSN devono essere condivise in rete
- E' sufficiente l'attuale tecnologia di accesso a Internet?
- Perché c'è bisogno di una nuova tecnologia?

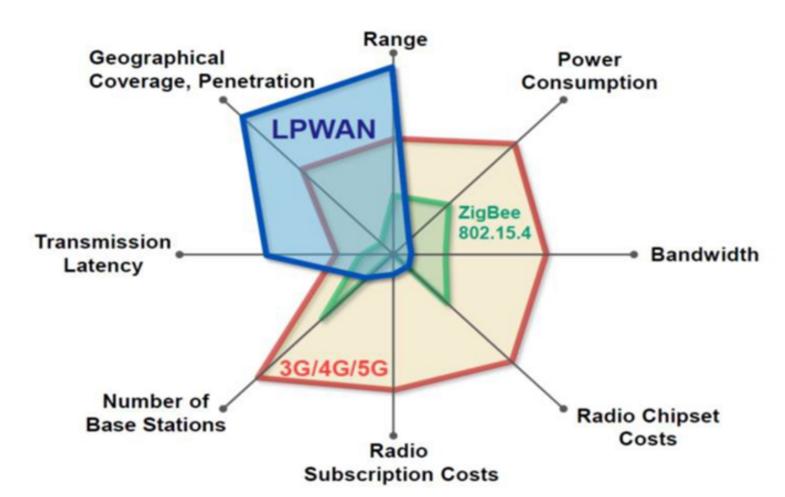
IoT rappresenta una nuova sfida con

- risorse limitate
- elevatissima numerosità
- basso throughput
- ampia penetrazione in zone rurali (Smart farming, etc...)

Image source: http://www.ictpower.it/tecnologia/lorawan.htm

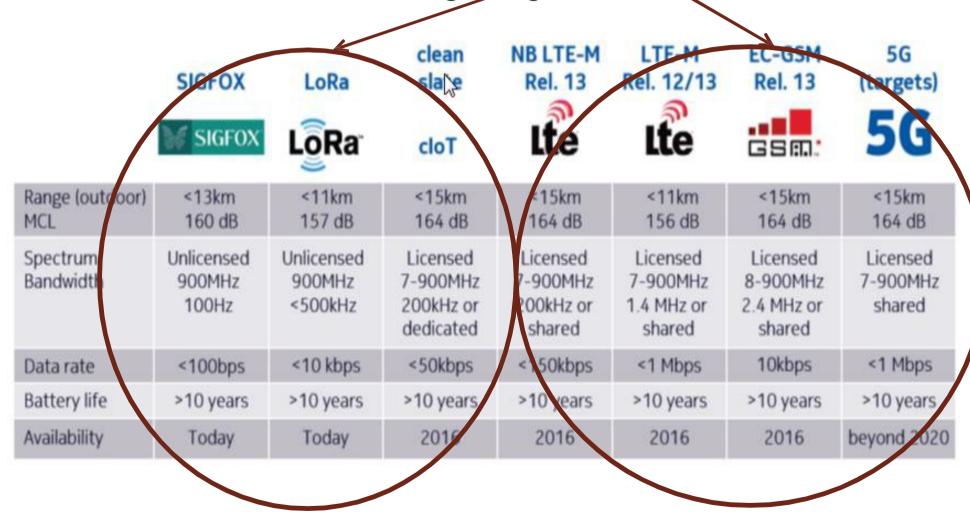
Soluzioni: low power networks

- Low Power Personal Area Networks
 - LowPAN e 6LowPAN
- Low Power Wide Area Network LPWAN
 - Tecnologie Long Range
 - LoRa Alliance™, SigFox
- Cellular IoT : NB-IoT
 - 3GPP (Standardization body for mobile networks) Release 13


Low Power Wide Area Networks

- Tecnologie radio abilitanti loT con
 - Long Battery Life
 - Low Cost chipsets and networks elements
 - Basso Throughput
 - Ampio Link Budget (> 10 km range in open field)
 - Connettività su ampie aree
- Complementa le esistenti reti cellulari

LPWAN Vs altre tecnologie

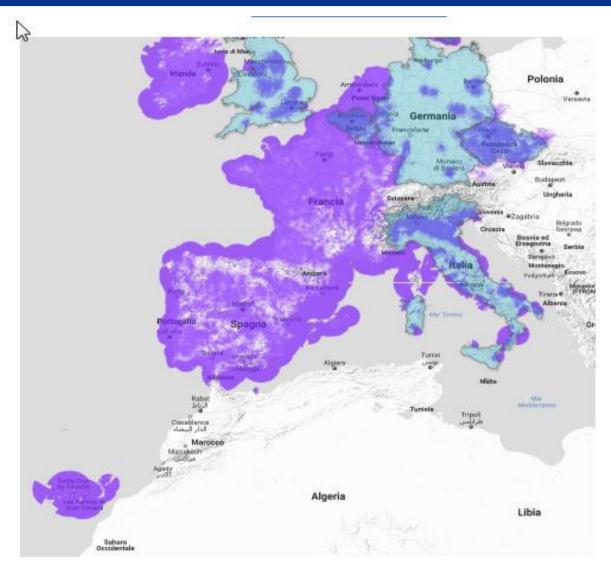

"LPWAN LOW POWER WIDE AREA NETWORK OVERVIEW OF EMERGING TECHNOLOGIES FOR LOW POWER WIDE AREA NETWORKS IN INTERNET OF THINGS AND M2M SCENARIOS "Peter Egli, 2015 - http://www.indigoo.com/dox/itdp/12_MobileWireless/LPWAN.pdf

LPWAN: Long Range WAN Vs Cell. IoT

Due standard concorrenti: Long Range WAN vs Cellular IoT

Extract from White Paper Nokia "LTE-M – Optimizing LTE for the Internet of Things" del 2015

Sigfox


- Fondata nel 2009 in Francia, Toulouse IoT valley
- Il primo global loT service provider
- Tecnologia:
 - Modulazione Ultra NarrowBand
 - Utilizza le bande 868 MHz (EU) e 902 MHz (USA) 920 MHz (Australia, SudAmerica)

Copertura:

- Presente in 23 nazioni tramite i suoi network operators
- Francia, Germania, Spagna
- Italia, Stati Uniti attualmente in fase di costruzione rete
- Roll out della rete in Italia tramite Nettrotter (Gruppo El Towers)

Sigfox coverage: Europe

Source: http://www.sigfox.com/en/coverage

LoRa[™] - Long Range WAN

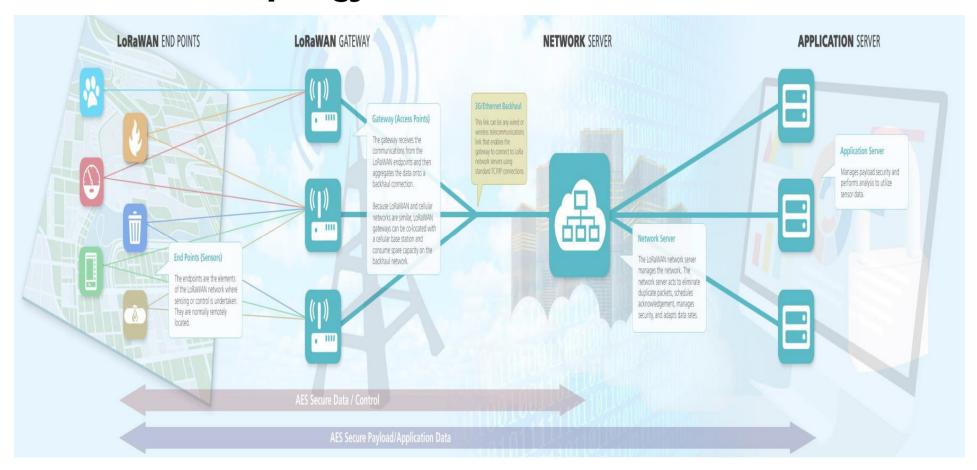
Tecnologia radio sviluppata da SEMTECH:

- Costituzione della LoRa Alliance ™ (IBM, Cisco....)
- Non è loT service provider: è una piattaforma per i service provider

Tecnologia:

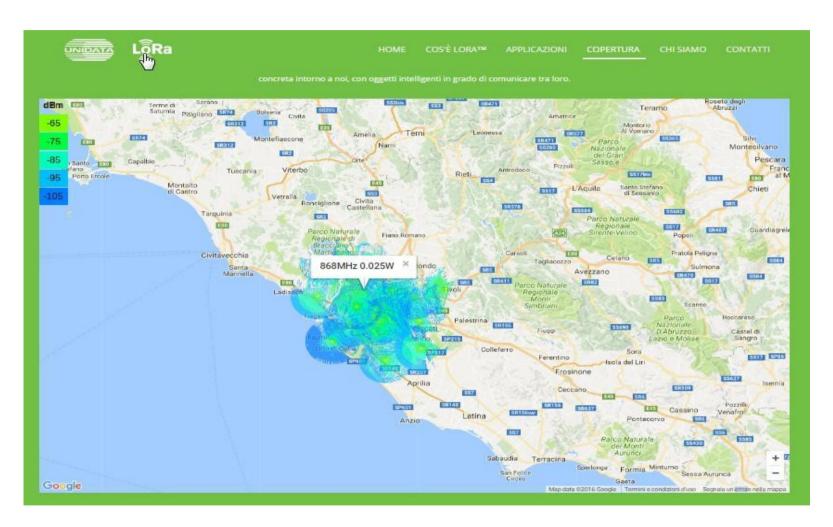
- LoRa è una modulazione Chirp Spread Spectrum
 Layer 1
- LoRa WAN è un protocollo di layer 2 Medium Access Control

Copertura:


- Senet in USA: 100 città coperte a Giugno¹
- A2A Smart City + Semtech: Lombardia occidentale
- Roll-out in Lazio: Unidata

^{1:} http://www.rcrwireless.com/20160615/internet-of-things/100-u-s-cities-covered-senet-lora-network-iot-tag17

LoRa Network Architecture


Start of stars topology

LoRa network architecture. Source: Semtech

Copertura LoRa Lazio

Source: https://loraitaly.it/#copertura

Cellular Techs: LTE-M & NB-IoT

	Release 8	Release 8	Release 13	Release 13
Modem/device chip category	Category 4	Category 1	Category M1 (eMTC)	Category NB1 (NB-IoT)
Downlink peak rate	150Mbps	10Mbps	1Mbps	170kbps
Uplink peak rate	50Mbps	5Mbps	1Mbps	250kbps
Number of antennas	2	2	1	1
Duplex mode	Full duplex	Full duplex	Full/Half duplex	Half duplex
UE receive bandwidth	1.08-18MHz	1.08-18MHz	1.08MHz	180kHz
UE transmit power	23dBm	23dBm	20/23dBm	20/23dBm
Multiplexed within LTE	Yes	Yes	Yes	Yes/No
Modem complexity	100%	80%	20%	15%

Figure 7: Complexity/cost reductions for LTE-M and NB-IoT evolution

- 3GPP Release 12
 - Introduce LTE-M
 - UE (User Equipment) Category 0
 - Significativa riduzione dei data rate
- 3GPP Release 13
 - Ottimizzazione di LTE-M
 - Introduce NB-IoT
 - Riduzione banda a 180 kHz sia Downlink che Uplink
 - Atteso lancio commerciale delle reti seconda metà 2017
 - Ottimizzazioni IoT nella Core Network
- Spettro proprietario, in concessione agli operatori

Extract from White Paper Nokia "LTE-M – Optimizing LTE for the Internet of Things" del 2015

LoRa Vs NB-IoT

	LoRa	NB-IoT
Spettro	Unlicensed	Licensed
Synch	Wake-up	Regular
Troughpput	basso	alto
Battery drain	Basso	alto
Timeline	Ready	2° half 2017
Cost	Basso	alto

Digitalizzazione dei

processi: la piattaforma lo T

Grazie per la cortese attenzione

Giuseppe Calabrò giuseppe.calabro@unitus.it

Arcangelo Lo lacono a.loiacono@unitus.it

Back-up slides

Back-up slides

IoT Hardware: stato dell'arte

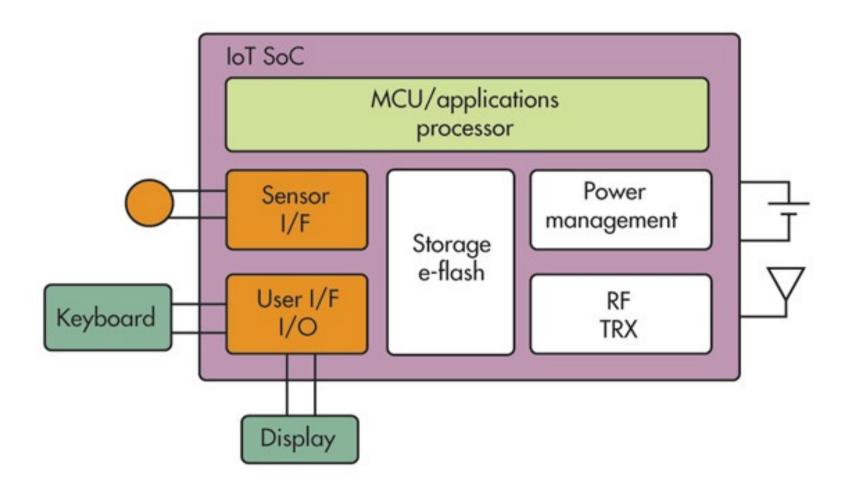


Image source: http://electronicdesign.com/analog/define-analog-sensor-interfaces-iot-socs